1049-11-5
Hung-ping Tsao* (hptsao@hotmail.com), 1151 Highland Drive, Novato, CA 94949. Powered sums as linear combinations of binomial coefficients.
We shall introduce an inductive method to express the sum of any power of the first n terms of an arithmetically progressive sequence as a linear combination of binomial coefficients. A rather simple recursive formula is also obtained. In general, this method can be applied to any sequence with the sum of the first kn ( k is a constant) terms being a linear combination of $C(n, 2)$ and $C(n, 1)$. For example, for the sequence $1,2,4,5,7,8, \ldots, 3 n-2,3 n-1, \ldots$, the sum of the first 2 n terms can be expressed as $6 \mathrm{C}(\mathrm{n}, 2)+3 \mathrm{C}(\mathrm{n}, 1)$ and that of the second power of which is $36 \mathrm{C}(\mathrm{n}, 3)+36 \mathrm{C}(\mathrm{n}, 2)+5 \mathrm{C}(\mathrm{n}, 1)$. The iterative method of using integration will also be presented. (Received August 06, 2008)

