1047-42-277

H.-Q. Bui and R. S. Laugesen* (Laugesen@illinois.edu), Department of Mathematics, University of Illinois, Urbana, IL 61801. *Frequency-scale frames and the solution of the Mexican hat problem.* Preliminary report.

We resolve a twenty year old open problem on L^p completeness of the time-scale (or wavelet) system generated by the Mexican hat function, when 1 .

Our main result concerns frequency-scale systems generated by modulation and dilation of a single function. The mixed frame operator (analysis followed by synthesis) is shown to be bijective from L^q to itself, for $1 < q < \infty$, and also from $W_*^{1,2}$ to itself, so that the frequency-scale synthesis operator is surjective onto those spaces. Tools include the discrete Calderon condition and a generalization of the Daubechies frame criterion in L^2 .

Completeness of the Mexican hat and other time-scale systems in L^p , 1 , then follows by Fourier imbedding of the frequency-scale systems. (Received January 30, 2009)