1047-08-109 Clifford Bergman* (cbergman@iastate.edu), Department of Mathematics, Iowa State University, Ames, IA 50011. Categorical Equivalence of Unary Algebras. Preliminary report.

For an algebra \mathbf{A} , let $\mathcal{V}(\mathbf{A})$ represent the variety generated by \mathbf{A} , viewed as a category. We say that algebras \mathbf{A} and \mathbf{B} are *categorically equivalent* if there is an equivalence of categories $F \colon \mathcal{V}(\mathbf{A}) \to \mathcal{V}(\mathbf{B})$ such that $F(\mathbf{A}) = \mathbf{B}$. We shall consider the question of characterizing those algebras that are categorically equivalent to a finite algebra, all of whose operations are unary.

In one special case the answer is known. Let **B** be a finite algebra with no nullary operations. Then **B** is categorically equivalent to an algebra all of whose operations are (unary) permutations if and only if, for every n > 0, the lattice $Sub(\mathbf{B}^n)$ is boolean. (Received January 22, 2009)