1041-52-100 Oleg R. Musin* (omusin@gmail.com), Dept. of Mathematics, University of Texas at Brownsville, 80 Fort Brown, Brownsville, TX 78520. Spherical two-distance sets.
A set $S$ of unit vectors in $n$-dimensional Euclidean space is called spherical two-distance set, if there are two numbers $a$ and $b$, and inner products of distinct vectors of $S$ are either $a$ or $b$. It is known that the largest cardinality $g(n)$ of spherical two-distance sets does not exceed $n(n+3) / 2$. This upper bound is known to be tight for $n=2,6,22$. The set of mid-points of the edges of a regular simplex gives the lower bound $L(n)=n(n+1) / 2$ for $g(n)$.

In this talk using the so-called polynomial method it will be proved that for nonnegative $a+b$ the largest cardinality of $S$ is not greater than $L(n)$. For the case $a+b<0$ it's proposed upper bounds on -S - which are based on Delsarte's method. Using this it could be shown that $g(n)=L(n)$ for $6<n<22,23<n<40$, and $g(23)=276$ or 277. (Received August 05, 2008)

