1041-46-233

Yehoram Gordon, Alexander Litvak, Alain Pajor and Nicole Tomczak-Jaegermann* (nicole.tomczak@ualberta.ca), Dept of Mathematical and Statistical Sciences, Edmonton, Alberta T6G 2G1, Canada. Random ε nets and embeddings in ℓ_{∞}^{N} .

We show that, given an *n*-dimensional normed space X a sequence of $N = (8/\varepsilon)^{2n}$ independent random vectors $(X_i)_{i=1}^N$, uniformly distributed in the unit ball of X^* , with high probability forms an ε net for this unit ball. Thus the random linear map $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ defined by $\Gamma x = (\langle x, X_i \rangle)_{i=1}^N$ embeds X in ℓ_{∞}^N with at most $1 + \varepsilon$ norm distortion. In the case $X = \ell_2^n$ we obtain a random $1 + \varepsilon$ embedding into ℓ_{∞}^N with asymptotically best possible relation between N, n, and ε . (Received August 11, 2008)