1041-14-51 Anton Leykin* (leykin@math.uic.edu). Numerical primary decomposition.

Consider a complex affine variety $X \subset \mathbb{C}^n$ defined by an ideal I in the corresponding coordinate ring. The main construction we employ is that of the *deflated variety* $X^{(d)}$ in a complex space of higher dimension with a natural projection onto X. For an embedded component $Y \subset X$ we show that there exists d such that there is an isolated component $Z \subset X^{(d)}$ projecting onto Y.

This leads to a new decomposition algorithm. In particular, if numerical primary decompositon is used for finding isolated components of a deflated variety, then all components of I can be described with numerical data. We call such description a numerical primary decomposition (NPD); Some tasks accomplished traditionally with Gröbner bases can be approached with the NPD, e.g., the ideal membership problem. (Received July 28, 2008)