splittings of homogeneous polynomials.
First we will define when a homogeneous polynomial f decomposes or "splits" additively. Up to base change this means that it is possible to write $f=g+h$ where g and h are polynomials in independent sets of variables. This simple notion naturally leads us to define a set M_{f} of matrices associated to f. Surprisingly, M_{f} turns out to be a commutative matrix algebra when $\operatorname{deg} f \geq 3$. We show how all (regular) splittings $f=g_{1}+\cdots+g_{n}$ can be computed from M_{f}.

Next we show how to find the minimal free resolution of the graded Artinian Gorenstein quotient $R / \operatorname{ann}(f)$, assuming the minimal free resolutions of its additive components $R / \operatorname{ann}\left(g_{i}\right)$ are known. From this we get simple formulas for the Hilbert function and the graded Betti numbers of $R / \operatorname{ann}(f)$. We may use this to compute the dimension of a "splitting subfamily" of the parameter space PGor (H). Its closure is quite often an irreducible component of PGor (H). (Received August 11, 2008)

