1025-57-139Jozef H Przytycki* (przytyck@gwu.edu), George Washington University, Washington, DC
20052, and Maciej Niebrzydowski. Homology of dihedral quandles.

We solve the conjecture by R. Fenn, C. Rourke and B. Sanderson that the rack homology of dihedral quandles satisfies $H_3^R(R_p) = Z \oplus Z_p$ for p odd prime. We also show that $H_n^R(R_p)$ contains Z_p for $n \ge 3$. Furthermore, we show that for p = 3 the torsion of $H_n^R(R_3)$ is annihilated by 3. We also prove that the quandle homology $H_4^Q(R_p)$ contains Z_p for p odd prime. We conjecture that for n > 1 quandle homology satisfies: $H_n^Q(R_p) = Z_p^{f_n}$, where f_n are "delayed" Fibonacci numbers, that is, $f_n = f_{n-1} + f_{n-3}$ and f(1) = f(2) = 0, f(3) = 1. We propose the method of approaching the conjecture by constructing rack homology operations $H_n^R(R_p) \to H_{n+1}^R(R_p)$ and $H_n^R(R_p) \to H_{n+2}^R(R_p)$, and quandle homology operations $H_n^R(R_p) \to H_{n+3}^R(R_p)$. We conjecture, and partially prove (http://arxiv.org/abs/math.GT/0611803), that the above operations are monomorphisms and the images (in appropriate dimensions) are disjoint. To approach the general conjecture about $H_n^Q(R_p) = Z_p^{f_n}$ we need one more quandle homology operation $H_n^Q(R_p) \to H_{n+4}^Q(R_p)$, construction of which is an open problem. (Received January 20, 2007)