arithematic progression among different powers.
Let $\mathrm{S}(\mathrm{n} ; \mathrm{k})$ be the k -powered sum of $\mathrm{a}, \mathrm{a}+\mathrm{d}, \mathrm{a}+2 \mathrm{~d}, \ldots, \mathrm{a}+(\mathrm{n}-1) \mathrm{d}$. Then the polynomial expression in n of $\mathrm{S}(\mathrm{n} ; \mathrm{k})$ can be obtained via $S(n ; k)=d[n+(a / d)] S(n ; k-1)-[S(1 ; k-1)+S(2 ; k-1)+\ldots+S(n ; k-1)]$, which can also be used to prove the closed form for $\mathrm{S}(\mathrm{n} ; \mathrm{k})$ already established [Abstract \#1012-11-11] by the mathematical induction on k . The least-square-fit polynomial regression formulas for any equally spaced observed data can be substantially simplified by virtue of relationships among $S(n ; k)$'s. For example, the quadratic formula of this kind can be obtained due to the fact that $S(n ; 4) S(n ; 2)-S(n ; 3) S(n ; 3)$, $\mathrm{S}(\mathrm{n} ; 4) \mathrm{S}(\mathrm{n} ; 1)-\mathrm{S}(\mathrm{n} ; 3) \mathrm{S}(\mathrm{n} ; 2), \mathrm{S}(\mathrm{n} ; 4) \mathrm{S}(\mathrm{n} ; 0)-\mathrm{S}(\mathrm{n}: 2) \mathrm{S}(\mathrm{n} ; 2), \mathrm{S}(\mathrm{n} ; 3) \mathrm{S}(\mathrm{n} ; 1)-\mathrm{S}(\mathrm{n} ; 2) \mathrm{S}(\mathrm{n} ; 2)$ and $\mathrm{S}(\mathrm{n} ; 3) \mathrm{S}(\mathrm{n} ; 0)-\mathrm{S}(\mathrm{n} ; 2) \mathrm{S}(\mathrm{n} ; 1)$ all have the commom factor $\mathrm{d}(\mathrm{dn} / 2) \mathrm{C}(\mathrm{n}+1,3)$, with $\mathrm{C}(\mathrm{n}+1,3)$ being a binomial coefficient. (Received March 06, 2006)

